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ABSTRACT 

The energy dissipation and damping characteristics of aluminum cantilever beams having an interface at which 
slip is allowed t o  occur are studied. Theoretical solutions for slip in cantilever beams previously available are extended 
to  beams with either nonsymmetric or multiple interfaces. An approximate solution is obtained in which the effects of 
distributed inertia forces are included. From forced vibration experiments on beams in air at 1 atmosphere and in 
vacuum, it is found that the effective coefficient of friction is greater in vacuum. The effect of this increase in friction 
coefficient on damping, as measured by the loss coefficient, is found to depend upon the vibration amplitude as well as 
other system parameters. 

Supplementary slip experiments with copper show a large increase in friction coefficient in vacuum over that 
obtained in air. 
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1. INTRODUCTION 

This report presents results obtained during the second year of a study of interface damping in structural type 
joints. During the first year of effort, the slip behavior at the interface between two small, nominally flat specimens 
subject to constant normal load and oscillatory tangential load was studied. Aluminum specimens were tested in 
atmospheric and vacuum (up to lo-'' torr) environments. Differences observed in the slip behavior and energy 
dissipation between the air and vacuum conditions were attributed to the action of surface oxide layers on the 
aluminum. These studies were reported in detail in Reference 1. 

In the present study, this work is extended to an investigation of the effects of decreasing atmospheric pressure 
on the magnitude of the energy dissipation or damping in a vibrating structural element. The structure chosen is a 
cantilever beam having a single interface held together with a constant clamping pressure. This system is amenable to at 
least approximate analysis of the slip forces and displacements at the interface and, thus, calculation of the energy 
dissipation per cycle or the loss coefficient. A major objective of the study, then, is an evaluation of the effect of the 
vacuum environment on the damping properties of this simple structure. 

A number of theoretical analyses have been made of the energy dissipation due to slip in various types of lap 
joints [2,3,4,5] * and in built-up beams. [6,7,8] These analyses are all based upon the application of a static load cycle, 
i.e., no inertial forces are considered. A second common assumption is that the slip (relative tangential displacement 
between the two faces of the joint) is governed by simple Coulomb friction. Thus, slip will occur at any point of the 
joint interface where the shear stress reaches the critical value 

where 1.1 is the coefficient of Coulomb friction, and cr, is the stress acting normal to the interface. The coefficient p is 
taken as a constant, so that differences such as between a static and dynamic coefficient are neglected. 

Theoretical analyses of slip damping in built-up beams have been presented by Pian and Hallowell [6], Goodman 
and Klumpp [7], and Pian [8]. In the investigations of Pian [6,8], a cantilever beam with attached (riveted or bolted) 
spar caps was considered and analytical solutions derived for the static force-displacement hysteresis loops. For the 
beam geometries considered, slip was initiated locally at the point of discontinuity between the cap and the beam and 
the slip area increased continuously with increasing applied load. The analysis of Goodman and Klumpp [7] dso 
considered a cantilever beam; however, the slip area was a continuous interface running the entire length of the beam, 
i.e., the beam consisted of two identical halves. For this system, slip is not initiated until a finite critical load is applied, 
then slip occurs simultaneously over the entire interface. Again, static force-displacement relations were derived for this 
situation. Because of the different manner in which slip is initiated and progresses in the two situations, the analytical 
solutions are different in form. 

Experiments performed using static loading confirmed the shape and magnitude of the predicted hysteresis loops 
in both cases. In addition, limited dynamic experiments were performed. Pian [8] measured the rate of decay of free 
vibration. Goodman and Klumpp [7] measured the phase angle between input force and velocity during forced 
vibration near the first mode fundamental frequency. In both cases, the results of the dynamic experiments appeared to 
agree in terms of energy dissipation per cycle with the results of the static analysis. These experimental results tend to 
indicate that the distributed inertia loading and associated changes in mode shape do not significantly change the 
magnitude of the energy dissipation by slip when compared with an equivalent static loading. 

An analysis is available for other types of joints or interfaces; however, it applies generally under direct stress 
rather than bending stress. See, for instance, the review by Goodman [2] and the recent work on lap joints by Earles 

*Numbers in brackets refer to  List of References at the end of this report. 



[3], Metherell and Diller [4] , and Brown [SI .. Earles [3] computes the frictional energy dissipation in a simple lap 
joint with both uniform (constant) and nonuniform clamping pressure, and also for the case where the shear force is 
partially transmitted by rivets. Metherell and Diller [4] consider uniform clamping pressure only, but calculate the 
instantaneous rate of energy dissipation in addition to the total dissipation per cycle. Brown [5] considers the 
geometric and surface factors affecting the interface energy dissipation with regard to  optimizing lap joint damping. 

Experiments to  measure the damping of vibrating cantilever beams in vacuum have been reported by McWithy 
and Hayduk. [9] Their beams were made of SAE 4130 steel and were riveted or bolted together with a single interface 
in the configuration analyzed by Goodman and Klumpp. Damping in terms of logarithmic decrement was obtained 
from the measured decay of tip displacement amplitude after release from a fixed initial amplitude. For low clamping 
pressure, it was found that the logarithmic decrement increased with tip displacement and was slightly higher in vacuum 
than in air at atmospheric pressure. 

In the succeeding sections of this report, we will first derive the expressions for energy dissipation in a cantilever 
beam with a single interface under uniform clamping pressure analogous to the solutions of Goodman and Klumpp. [7] 
The analysis is then extended to the case where the interface may occur at an arbitrary position (two laminates of 
unequal thickness) and to multiple laminates (interfaces). An approximate analysis including distributed inertia forces is 
also presented. In Section 111, experiments on double cantilever beams under forced vibration are described and 
compared with analysis. These experiments were run both in vacuum and at atmospheric pressure. Section IV presents 
some additional slip experiments with small blocks of copper to supplement the aluminum data [l] on a metal with a 
softer oxide of comparable hardness as the base metal. A discussion of the results obtained and conclusions of the study 
are presented in Sections V and VI. 
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II. ANALYSIS OF INTERFACE SLIP DAMPING IN 
CANTILEVER BEAMS 

The beam configuration being studied has been analyzed by Goodman and Klumpp [7] for a statically applied 
alternating load by satisfying the two-dimensional stress equilibrium equations and the appropriate stress boundary 
conditions for each half of the beam. When distributed inertia loading is included in this approach, the resulting plane 
elasticity problem is not so well posed, as both stress and displacement boundary conditions must be satisfied simul- 
taneously. Initial efforts to solve this two-dimensional dynamic elasticity problem did not suggest that an exact solution 
was possible. Therefore, the following approximate solution is developed. First, the static solution is derived from 
essentially one-dimensional, Bernoulli-Euler beam analysis rather than from two-dimensional elasticity theory. This 
approach gives a little more insight into the mechanics of the problem and leads to a form in which the dynamic correc- 
tion terms may be incjuded in an approximate manner. The dynamic, forced vibration solution is obtained by adding 
additional terms arising from the distributed inertia loads to the static displacements. The expressions derived for 
static loading are, however, the same as obtained in Reference 7. 

Static Analysis 

Consider the cantilever beam shown in Figure 1 with thickness 2h, width b ,  and length 1. The loading consists of 
a uniformly distributed clamping pressure p ,  and a concentrated load P applied at the free end, x = 1. Each of the two 
halves of thickness h may be considered 
separately with the loading as depicted in 
the lower half of Figure 1. The continuity 
of stress and vertical displacement,v, is im- 
posed at the interface. ~-~,p F i 4  

At some finite value of P, the shear 
stress at the interface will reach the critical 
value for slip, T , ~  = p p .  Additional loading 
will then produce a relative displacement 
Au(x) at the interface. For completely re- 
versed loading, the product of the shear 

Au, integrated over the length of the beam 
is equal to one-fourth the energy dissipated 

J"fp/2 r x, " F, -f - - c -  _c 

force, p p ,  and the relative displacement, 

in a complete cycle; i.e., the forcerelative 

is given by [7] I I 

Txy = PP Y, v 

M Z -  

Au displacement = 0. Thus, cume energy must dissipation be symmetric per about cycle F*--f fqqqqq t P I 2  

I 

= 4ppb ,f (u2 - u l )  'dx 
0 

FIGURE 1. LOADING AND COORDINATES 
FOR BEAM PROBLEM 

where u1 and u2 are the displacements in the x-direction of points on the adjacent faces of the upper and lower half- 
beam, respectively. These displacements are produced by the resultant axial force Fl , 2 ,  and moment Ml , 2 ,  about the 
centroid of each half-beam. The displacements at any axial position x and y ,  ,2 = T h/2 are given by: 
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X 1 h dvi 
u 1 = -  J a,, dx’--- 

E O  2 d x  

and 

2 d x  

where v1 and v2 are the vertical deflections. The continuity condition v1 = v2 = u must prevail. 

From simple force equilibrium, 

PP PP 
h ax = - ( 1  - x )  ; ax2 = - - ( 1 - x )  

The resultant moment at any section is 

and the moment-curvature relation yields 

where I = bh3/12. Integrating once gives 

- (P-ppbh) 
dv 6 
dx Ebh3 

where the integration constant C1 = 0 because of the boundary condition (dv/dx)L=, = 0. A second integration yields 

3 
Ebh3 

v = -  (P - ppbh) (Zx2 - :) t- Cz 

where again the integration constant C2 = 0 since VI,=, = 0.. This is the static deflection mode shape, 

For convenience, we define two dimensional parameters 

Q = ~ ~ b h  

and 
Ebh3 R = -  

13 

Thus, 
v(x)=-- p -  Q [3 (;J-( ;I] 

R 

(7) 
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Combining (3 ) ,  (4) ,  and (7), and performing the indicated integration, the relative slip displacement at the inter- 
face is 

A u = u ~ - - u 1 = ~ ” ( . - P Q )  R 1  [ 2 ( ; ) - ( ; r ]  

Slip will occur only for P > P, = 4Q/3. If the beam is loaded cyclically between the loads kP, , then by substituting 
(1 0) in (2) the energy dissipation per cycle is 

R (P, -4 Q )  

The maximum tip displacement v ,  , corresponding to P = P, is obtained from (8) by letting x = I; 

Then the energy dissipation in terms of displacement is 

D s = 4 Q  v , - - -  i :,”> 
The load-deflection curve for the beam is given in Figure 2. The curve is bilinear with elastic compliance 

C1 = 1/2R, and slip compliance C, = 2/R. Slip is initiated at the critical load P, = 4Q/3 and displacement v, = 2Q / 3R. 

In vibration problems, it is most convenient to express the dissipative properties of the system in terms of a 
nondimensional quantity such as the loss 
coefficient qs, defined* by 

where Us is the maximum strain energy 
stored in the system. The strain energy is 

c1 p = - p = = -  
2 , 4 R  

1 

or 

2 u s = - ( l + Q )  1 Rv, 

4R 

The following expressions are thus obtained 
for the loss coefficient: FIGURE 2. STATIC LOAD VS TIP DEFLECTION FORCANTILEVER BEAM 

*The nomenclature recommended by Lazan [ 101 is used. Also see Lazan for relationships between qs and other damping parameters. 
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and 

4 Q  77,=lbjl3--(_)?] ll 3 p m  (14b) 

The relations are plotted in Figures 3a and 3b. The arrows indicate the direction of increasing load or deflection 
with point A corresponding to the onset of slip. Whereas the energy dissipation per cycle always increases with increasing 

77, I 74 t 

0 - 
Q Clpbh 
Pm Prn 

0 0.375 0.75 
- 0 -  

FIGURE 3a. LOSS FACTOR VS LOAD PARAMETER 

0' I 

0 0.67 3.: 33 Rv, Eh2vm 
Q ~ P A ~  

-=- 

FIGURE 3b. LOSS FACTOR VS DISPLACEMENT PARAMETER 

load or deflection, the loss coefficient increases in region AB and then decreases with further increase in load or deflec- 
tion. The point B at which a maximum in loss coefficient occurs depends upon the values of the dimensional and 
material parameters of the beam as well as the loading. 

Nonsymmetric Beam 

The same analysis may be applied when the two segments of the beam have different thicknesses, say h and h 2 .  
In this case the interface will not occur at the centroid of the total beam section.. Let the total beam thickness again be 
2h, so that hl  + h2 = 2h, and let h ,  = ah2. Then the stress and moment relations corresponding to (4) and(5)are 
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and 

L 

M1 = P 1 ( Z - x ) - -  IJpb* ( E  - x )  
(a+ 1) 

Integrating the moment relations, the displacements are obtained as 

3(a + 1)3 ( I ,,ha) ( t2 :) 
V I  = p 1 - -  --- 

Ebh3a3 (a + 1) 

and 

Enforcing the continuity condition v 1  = v2 and the relation P I  + P2 = P ,  we can solve for the loads P 1  and P2 carried 
by each beam. Thus 

a 3 ~  + 4 2 @ 3  - a  + i ) ~  
P ,  = 

a3 + 1 

P + a(& - 1)Q 
CY3 + 1 

P2 = 

Utilizing (15), (16), and (17) in (3) and (2), and carrying out the indicated operations and algebra, one arrives at the 
relations for energy dissipation: 

QI 2(a + 113 Q (a3 + 3a2 + 3a + 1) 

3a(a + 1) D, = - [Pm - (a3 + 1) R 

or 

where Q and R are defined as before [(9a) and (9b)l. Correspondingly the loss coefficient is 

% = 

For a = 1, (19) and (20) reduce to (1 1) and (14). All other parameters remaining constant, for a > 1 ,  initiation of slip 
requires a larger displacement and the maximum in the loss coefficient is decreased in comparison with a = 1. In other 
words, energy dissipation vs damping is maximized by having the slip surface at the centroid of the total beam cross section. 
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Multiple I n terfaces 

Consider the beam made up of three laminates of equal thickness, so that slip is occurring on two interfaces 
simultaneously. Again, for comparative purposes, let the total thickness of the beam be 2h, and the thickness of each 
laminate is then 2k/3 .  For the two outer laminates (denoted by subscripts 1 and 3),  the displacements at the interface 
y = T h/3  are 

and for the center laminate (subscript 2) 

h dv u2 = f - -  
3 d x  

Because the shear loading on the center laminate is balanced, the axial stress resultant ox2 = 0. The other stress resul- 
tants are 

3PP 
2h 

a,, = - ( 2 - x )  

- 3 w  ax3 --- 2h ( 1 - x )  

The bending moments are 

h 

3 
M i  =M3 =P,,3(Z- X )  - w b  - ( 2  - X )  

and 

2h 

3 
Mz = P z ( Z - x ) - ~ p b - ( Z - x )  

From the moment relations, the vertical displacements are found to be 

and 

27 1x2 x3  
v2 =- 

2Ebh3 

Requiring that v i  = v2 = v 3  and P I  + P2 + P3 = P determines: 
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and 

1 2 
p z = -  3 

(P-;Q) 

The energy dissipation is then determined directly from (2) by summing the slip displacements over the two 
interfaces. Performing the required operations leads to 

D = -  24Q ( p _ _  3 Q )  
' R  2 :  

and 

The loss coefficient is 

For the same total thickness beam, the maximum in the loss coefficient is increased approximately 30 percent by having 
three rather than two equal laminates. However, for three laminates the onset of slip is delayed to higher load, 
Pc = 3Q/2 because the slip interface is off the center of the beam. This same critical load can be obtained by using 
a = 2 in (19). 

Additional numbers of laminates may be handled in a similar fashion. However, since slip will occur sequentially 
on each interface depending upon its distance from the center of the total beam section, the load deflection curve will 
become piece-wise linear instead of bilinear as in the examples cited thus far., It is also possible to include laminates of 
different material or modulus. 

Forced Vibration 

For the forced vibration of a cantilever beam, it is necessary to extend the static analysis to include distributed 
inertia forces and examine their effect on the mode shape, slip distribution and energy dissipation due to slip. The 
analysis developed here will follow the static analysis developed in the preceding sections for the beam as shown in 
Figure 1. 

We will consider the forced vibration of the beam produced by a time-dependent displacement at the unsupported 
end such that 

V(,=l =m 
Following Timoshenko [ 1 11, the dynamic displacement may be composed of two parts 

v = V I  + V I ]  

9 



where 

VI=[-( 3 x  -y --( 1 x  -y]f(t) 
2 1  2 1  

The term in brackets represents the static mode function and satisfies the end conditions: 

but not the dynamic equilibrium equation 

a4v a2 v 
ax4 at2 

EI- + p A - = O  

The displacements vI produce dynamic loads given by 

Therefore, the displacements vI1 must satisfy the end conditions 

and represent vibrations produced by the forcing function (26). We thus take 

where the modal functions Xi are solutions of (25) and satisfy the end conditions (27). Thus, 

Xi = sinh kjl sin k k l -  x) - sin kil sinh kj(i - x) 

where kj are the roots of 

tanh kjl = tan kil 

The total displacement is then 

By application of the principle of virtual work, it is straightforward to show [ 111 that the time-dependent 
functions qi(t) must satisfy the differential equation 

10 



where the dot superscripts denote differentiation with respect to time. The coefficients b are obtained by expanding 
the forcing function (26) in a series of the normal functions, X i .  Thus, 

and the coefficients bi are obtained from 

1 

J xi[; (; 7 -+ ( $1 dx 
0 

S x:dx 
0 

Upon performing the indicated integrations, it is found that 

2 
kil(sinh kil - sin kil) 

bi = 

The general solution of (3 1) is 

t bi 
Pi 0 

cpi(t) = A i  cos p i t  + Bi sin pi t  - - I R7) sin pi( t  - 7) d7 

where 

We now evaluate the A i  and Bi from the initial conditions 

v(0) = U(x,O) 

i(0) = V(x,O) 

From (3 1) and (35) 

and 

However, since: 

(33) 

(34) 
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3 x  1 x  [T ( ~ y  -- 2 1  (-,’]=z i biXi 

V(x,O) = Xi {Bipi 4- bif(0)} 
i 

Taking initial conditions U = V =  0, we have 

Ai = -biflO) 

Substitution of (36) and (34) into (3 l), yields 

r -j@)c b. 2 Xi sin pit - bi - Xi I .?(T) sin pi(t -7) dt 
i Pi i Pi 0 

using, 

(37) becomes 

The relative slip at the interface is given by 

(37) 

(38) 

(39) 

Utilizing the mode shape (38), (39) becomes: 

12 



+ h c biki [sinh kil cos ki(Z - x) - sin kil cosh ki(E - x)] * 
t 

X [fit) - pi  OJ' f ( ~ )  sin pi(t - T) d ~ ]  

Equations (38) and (40) account for the effect of distributed inertial forces on the transverse mode shape and relative 
slip distribution. 

The change in the distribution of slip due to the dynamic terms will now be shown not to effect the energy dissipa- 
tion per cycle. The energy dissipation is again given by the product of the interface shear stress (assumed constant during 
slip) and the relative slip integrated over the length of the beam according to (2). Using (40) and performing the inte- 
gration, there results 

D, = 4ppbh At) - - - [ :zJ 
where f(t) must be interpreted as the maximum oscillatory amplitude of the tip displacement. This result is the same as 
obtained for a static tip displacement, Y ,  . The second or dynamic term in (40) makes no contribution. This can be 
understood by examining the relation (39). Changes in the dynamic mode shape v(x) enter the energy dissipation rela- 
tion (2) through the term 

From the boundary conditions (24) and (27), all displacements except vIIx=z corresponding to the static mode shr2e 
vanish. Thus, while the distribution of slip is changed, the total integrated slip is the same for equal static and dynamic 
tip displacements. 

The dynamic analysis above can be considered only approximate when slip is occurring, since the system is then 
nonlinear, having a nonconstant compliance or stiffness. The dynamic analysis is based upon linear vibration theory. A 
more exact analysis would require the inclusion of amplitude dependent, in-plane shear forces or equivalent axial stress 
resultants. The inclusion of distributed forces along the length of the beam also implies that the shear stress at the inter- 
face is not constant as in the static case. Therefore, the transition from the fully elastic region to the region where slip is 
occurring may be expected to be somewhat gradual in the dynamic case rather than abrupt as in the static case. For the 
fundamental mode, where the static and dynamic mode shapes do not differ greatly, it would appear that the static 
analysis will be sufficiently accurate to predict energy dissipation. This is partially substantiated by the experiments [7,8] 
mentioned previously. 

Since the force-displacement curve (Figure 2) is nonlinear and hysteretic, it is possible to only estimate a frequency 
corresponding to a fundamental resonant mode. This frequency will be amplitude dependent. An approximate expression 
for the fundamental frequency of a cantilever beam is 

f +] 112 

2ri 0.23M I 

13 



where fl is the frequency in cps, K is an effective static stiffness and M = 2lbhp is the total mass of the beam. For the 
cantilever beam with a single, central interface, we can let 

P, Ebh3 ppbh 
K=-=- +- 

v, 213 Vm 

then 

Rearranging and letting co = (E/p)lI2, we obtain 

- f l =  612 [ 1 + -  ;vy2; v 2 v c  
hc0 

The frequency parameter (612/hc,)f1 varies between the limits 1 and 2. The maximum frequency, corresponding to a 
solid beam of thickness 2h is obtained by setting v, = vc = 2Q/3R. The minimum frequency occurs when Q = 0 
and two beams of thickness h vibrate independently. 

14 



111. EXPERIMENTS ON INTERFACE SLIP DAMPlNG IN CANTILEVER BEAMS 

Apparatus 

The experimental setup consists of a double cantilever beam driven by an electromagnetic exciter as shown in 
Figure 4. A similar arrangement was used by Granick and Stern [12] for the measurement of material damping in solid 
beams. In the present system, energy dissipa- 
tion is obtained from direct measurement of 
the input force and displacement. The energy 
supplied at the input point can be dissipated by 
slip at the interfaces of the beam, hysteretic 
losses due to  cyclic stress in the beam, and by 
losses due to  interaction of the beam with the 
surrounding atmosphere. It will be shown in 
Section V that the measured losses are due 
almost entirely t o  slip. 

The major parts of the system can be seen 
in Figure 4. The 50-lb capacity electromagnetic 
exciter is rigidly attached t o  a flange which 
mounts on one port of the vacuum facility. The 
vacuum facility is the same as described in 
Reference 1. The exciter drives the midpoint of 
the double cantilever beam through a carefully 
guided shaft. The length of the driving shaft is 
such as to position the beam in the vacuum 
facility at a point where it can be visually 
observed through a viewing port. A flexible 
bellows connects the mounting flange and the 
driving shaft to provide a vacuum seal for the 
externally mounted exciter. 

The input driving force is measured by a 
strain gage instrumented dynamometer section 
in series with the drive shaft and the beam. The 
input displacement is measured by a noncon- 
tacting, inductance type displacement trans- 
ducer, rigidly mounted to the base and posi- 
tioned to measure the displacement of the 
midpoint of the beam. 

FIGURE 4. EXPERIMENTAL BEAM SETUP 

The composite beam is constructed of two identical halves held together with periodically spaced clamps. The 
clamping arrangement is similar to that of Reference 7. The dimensions of the beams and clamps are given in the 
drawings of Figures 5 and 6 .  The beams are made of 7075-T6 aluminum and the interface surface is machined flat with 
a single-point flycutter on a milling machine. The surfaces were prepared in the same manner as in previous experiments 
reported in Reference 1. 

The C-type clamps provide variable clamping pressure by adjustment of the screw which applies the normal load. 
The load applied by each clamp is determined by a strain gage mounted on the back of each clamp. The output from 
each strain gage (clamp) was calibrated in terms of clamping force by means of dead-weight loading of the clamp. The 
strain gages on the clamps also allow monitoring of the dynankc clamping pressure during vibration of the beam. Since 
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FIGURE 5.  BEAM DIMENSIONS 
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FIGURE 6. C-CLAMPS FOR CONTROL OF CLAMPING PRESSURE 
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the clamp must rotate slightly to  accommodate displacement of the beam during bending, the dynamic clamping 
pressure oscillates about the mean (static) pressure at twice the input driving frequency. This variation has been 
measured to be approximately 5 percent of the mean value, depending upon the displacement amplitude, but will be 
assumed to have small effect upon the dissipation characteristics. Actually, since the clamps are at discrete points, there 
will be spatial as well as time-wise variations in clamping pressure at the interface. The beams were purposely made 
relatively thick in order to help distribute the normal pressure uniformly at the interface. 

The signal processing and recording instrumentation are shown schematically in Figure 7. The complete force- 
displacement hysteresis loop is displayed directly on an oscilloscope with photographic records taken as required. A 

Hysteresis  Loop 
A v e .  Power 

(Gage on Beam) 

Diff e r entia to 

FIGURE 7.  LAYOUT OF INSTRUMENTATION 

typical scope record of a hysteresis loop is shown in Figure 8. This loop is characteristicsof the loops obtained in both 
vacuum and air and corresponds to the theoretical shape shown in Figure 2. The static force displacement curve for the 
composite beam is bilinear with a change in compliance at the onset of slip of 4 to 1 .  This bilinear behavior results in 
harmonics in the forced vibration response, as evidenced by the oscillations observable in the hysteresis loop record. 
The energy dissipated per cycle may be obtained directly from this record by integrating the area within the hysteresis 
loop. A more direct method of average power measurement is inade electronically by multiplying the input force and 
velocity signals and recording the output on a digital voltmeter. The velocity is obtained by electronically differen- 
tiating the displacement-time signal. From the measured power, Q, and frequency,f(in cps), the energy loss per cycle is 
obtained from D, = Q/f. This direct power measurement is more convenient than the measurement of the hysteresis 
loop without loss in accuracy. 

As noted by Granick and Stern [ 121, there are two closely spaced frequencies at which the double cantilever 
beam may be excited. One frequency corresponds to a relative maximum in the input force and a minimum displace- 
ment at the driving point. The second frequency corresponds to a relative minimum in the input force and large input 
displacement. The normalized mode shape of the beam relative to the root is the same at both frequencies as 
determined by dynamic measurements. The bulk of the test data was obtained at the frequency corresponding to a 
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Displacement 

FIGURE 8. OSCILLOSCOPE RECORD OF HYSTERESIS LOOP 
DURING FORCED VIBRATION OF DOUBLE 

CANTILEVER BEAM 

minimum in the input force. This allowed 
us to achieve relatively large tip displace- 
ments within the force capacity of the 
electromagnetic exciter. 

The tip amplitude, v, , whch was 
used as a control variable, was determined 
from strain amplitude readings taken 
from near the root of the beam by means 
of resistance strain gages. Assuming the 
static mode shape, as given by (sa), the 
strain at the outer surface of the beam 
can be shown to be given by 

3 h  wl X 
Y m + -  1-- 

Eh 1 
e x =  -- 2 l2 

when v, 2 v,, and 

when v, < v,. When slip is occurring, the slope dv,/de is twice the slope for the rigid beam. A calibration curve for 
strain vs tip displacement is given in Figure 9 illustrating the predicted behavior. The calibration slope dv,/de varies by 
18 percent from that predicted from the static mode shape. Since the strain depends upon the second derivative of v(x), 
this difference is not surprising. 

In preliminary tests, the mode shape, tip displacement, and relative slip were measured photographically. This was 
done by using a strobe light synchronized to  the frequency of the beam to  “stop” the motion for a photographic 
record. A horizontal and vertical grid was ruled on the side of the beam so that absolute displacements could be 
measured from the photograph. A typical photograph of the beam during vibration is shown in Figure 10. 

Procedures 

Tests were performed under three separate environmental conditions, with three beam specimens tested for each 
condition. These conditions were: 

(1) Ambient room air at 1 atm pressure, beam surfaces cleaned only with acetone. 

(2) Dry air at 1 atm pressure, beam surfaces carefully cleaned by vapor degreasing. 

(3)  Vacuum (“ torr), beam surfaces carefully cleaned by vapor degreasing. 

For the first condition, the tests were performed in the open laboratory. Both the second and third test conditions were 
achieved with the beam sealed in the vacuum chamber. The dry air had less than 2 ppm hydrocarbons. The surface 
cleaning procedure for the dry air and vacuum tests was as follows: 

(1) Vapor degreasing in trichloroethylene 

(2) Immersion for 3 min in caustic solution (8 g sodium carbonate, 6 g trisodium phosphate, and water to  1 
liter) at 170-200’F. 

18 



(3)  Rinsing with hot water 0.25 

(4) Immersion for 3 min in acid 
solution (60 g chromic acid, 160 

liter) at 110-180’F. 
cc sulfuric acid, and water to  1 0.20 

(5) Rinsing with hot water. 
I= .- - 0.15 
E Surfaces cleaned by this technique were suf- 

ficiently clean to be “wet” by water. 

tions was to determine their effect upon the 

> 
S 
0 

V W 

.- 
c 

- The purpose of the three test condi- 
0.10 

energy dissipation of the beam system n 
i= during forced oscillation. Each beam was 

allowed to vibrate for a t  least 20 min a t  a 
maximum tip amplitude of 0.25 in. before 
taking readings at each test condition. Mea- 
surements were then taken of power, fre- 

and 
root strain. Two readings were taken at each 

0.05 

“C quency, input force and displacement, 

tip displacement (strain) amplitude, one 
while the displacement was being incre- 0 200 400 600 800 1000 

0 

Strain ( p i n . / i n .  1 2454 
mentally increased and a second while it was 
being decreased. While there were often dif- - 
ferences in these two readings, the magni- 
tudes could not be associated with the direc- 
tion of the loading cycle. 

FIGURE 9. CALIBRATION CURVE FOR TIP DEFLECTION AS 
MEASURED BY STRAIN GAGE AT ROOT OF 

CANTILEVER BEAM 

FIGURE 10. PHOTOGRAPH TAKEN AT MAXIMUM DYNAMIC DEFLECTION 
OF BEAM SHOWING MODE SHAPE AND SLIP DISTRIBUTION 
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The tests were repeated at  three clamping pressures, 10,20, and 30 psi. The clamping pressure was read from the 
strain gages on each clamp at both the beginning and at  the end of the test. These clamping pressures were never found 
to  change more than 5 percent from their initial values. The same beam was tested at each clamping pressure, starting 
with the lowest value and then resetting the clamps to the next higher pressure. Otherwise, new beam specimens were 
used for each test. 

Results 

From photographic records such as Figure 10, the mode shapes and slip distributions were obtained for several 
beams in air in the laboratory. These were used to confirm the modal distributions of (8) and (10). The normalized 
transverse displacement, u, , is given in Figure 11 for both static and dynamic loading. The dynamic mode shapes were 
obtained for both modes where the input force is either maximum or minimum. In the normalized displacement (U - 
D)/u,, the rigid body displacement, D, is subtracted out. There is little difference in the measured mode shapes and 
they all agree reasonably with the theoretical static mode shape. 

The slip displacement is given in Figure 12. Again, there is reasonable agreement between the experimental 
dynamic measurements and the theoretical static distribution. The maximum magnitude of the slip displacement, which 
occurs at x = I ,  ranges from 0.001 to 0.01 in. for the range of experimental conditions included in the test program. 

The magnitude of the energy dissipation per cycle calculated from the experimental measurements are plotted in 
Figures 13, 14, and 15 for the air, dry air, and vacuum tests, respectively. The experimental values have been divided by 
two to correspond to the single cantilever beam of the analysis. Each plot contains data points from three beams, each 
beam tested at three different values of clamping pressure. The solid lines drawn through the data points are a fit to the 
data based upon (1 la) and the indicated value of coefficient of friction p. It should be noted that 1-1, which is treated as 
the only unknown parameter in (1 la), is determined from both the zero intercept of the curve, W, = 2Q/ 3R = 2 / 3  
[(ppQ3)/(Eh2)], and the slope of the curve, dD,/du, = 4Q = 4ppbh. 

While the scatter, or nonrepeatability, of the data in some cases is appreciable, the behavior of the system is in 
general agreement with the theory as developed. The scatter appears to be due to the lack of reproducibility of the 
interface conditions, even after careful preparation, rather than a systematic deviation from the slip mechanism 
assumed in the development of the theory. Much of the scatter could be accounted for by assuming a different 
coefficient of friction for each individual specimen, rather than averaging three specimens at each clamping pressure. 
Only for a few specimens in vacuum was the data for a given specimen clearly nonlinear over the range in displacement. 
In these cases, the coefficient of friction was apparently decreasing with increasing tip displacement amplitude. 

The coefficients of friction p, obtained from the data of Figures 13-15, are summarized in Table I. Even for a 
given environmental condition, there appears to be some variation in the coefficient with clamping pressure. Some of 
this variation, such as for vacuum, is within the scatter of the individual data and may not be significant. However, in 
air, where the data are most reproducible, the differences are not within the scatter of the data. Thus, there appears to 
be some effect of clamping pressure on coefficient of friction for the particular surfaces studied. Goodman and Klumpp 
[7], whose tests covered an even wider range in clamping pressure, found the coefficient to be constant. Their surfaces, 
however, were specially prepared and lubricated with MoS2 and oil so as to control the friction coefficient. 

More significant than the changes in friction coefficient with clamping pressure is the larger increase in p when 
going from air at 1 atmosphere to carefully cleaned surfaces in a vacuum. The coefficient of friction is roughly doubled 
in vacuum over its value in room air with surface conditions which would approximate typical assembly practices. 
Removing the moisture from the air and contaminates from the surfaces of the metal tends to increase p, as expected, 
but not to the same extent as the vacuum. As in the previous study with aluminum [l] , the explanation appears to 
involve the role played by the hard surface oxide layers. In air, the oxide layer is continuously replenished if it is 
mechanically removed by the fretting action of the slip. Oxide debris particles are evident at the interface even after 
short periods of vibration. In vacuum, the oxide layer, once it is mechanically removed from the asperity points of 
contact, is not renewed and metal contact is established. This enhances the adhesion between the two surfaces and 

20 



U a 
N 

m 
L 

.- - 
E 
0 z 

1. 

0. 

0. 

0. 

Static 0 
Dynamic 

Fmax 
b i n  0 

00 

75 

50 

25 

0 I I I 

0 0.25 0.50 0.75 1.00 
Axial Position - R 2456 

X 

FIGURE 11.  NORMALIZED STATIC AND DYNAMIC MODE SHAPES 
FOR CANTILEVER BEAM 

0 
0 0.25 0.50 0.75 1.00 

2455 
X Axial Position 

FIGURE 12. COMPARISON OF THEORETICAL AND DYNAMIC 

CANTILEVER BEAM 
EXPERIMENTAL SLIP DISTRIBUTIONS FOR 

21 



M .n 
0 

n \ 

.- 
VI P 

a 
n 

a 
0 

Ln 0 

0 

0 

3 3  
0 : :  

a 
0 

a ._ c 
y\ 

2 

n. .- c 
Ln 0 

0 

0 
N m U 0 : N K * 0 0 

\o - U 

22 



.- 
YI n 

a 
n 

a 
0 

n .- 
I- 

0 

n o  
N S  
j f  

R 
0 

c ._ 
2 -  
D E  > 

n .- c 
y\ 0 

0 

0 

a 
0 

I 

c .- 
1 -  
0 ,E 

y\ 0 

0 

0 

23 



a 
0 

x 

c u  .- 0 -  
c 

s g  
0 %  a 

y\ 
P 
0 

n .- 
b- 

8 
0 

0 

n .- 
I- 

8 
O 

24 



TABLE I 

COEFFICIENT O F  FRICTION p, DETERMINED 
FROM BEAM VIBRATION TESTS 

Test 
Condition 

Clamping Pressure (psi) 
10 20 30 

Air 0.85 0.75 0.63 

Dry Air 1.10 0.80 0.80 

Vacuum torr) 1.30 1.55 1.67 

contributes to the increased coefficient of friction. Examination of the surfaces tested in vacuum show very bright and 
shiny localized wear areas. 

The beams tested in vacuum were more unstable in their amplitude response and tended in some instances to 
“freeze up.” This tendency towards increased friction or seizure is commonly referred to as cold welding. With constant 
input force, the displacement amplitude of the vibrating beam would suddenly decrease as slip at the interface ceased 
because of seizure. An increased input force would be required to initiate slip again. 

The accumulated data on energy dissipation are replotted in Figure 16 as the loss coefficient vs the deflection 
parameter Rv,/Q. The data points cover the entire range of displacement, clamping pressure, and environment of the 
present tests. The solid curve is defined by (14b) and describes accurately the mean value of the data points. There is, 
of course, the same large deviations about the mean that appear in the previous energy dissipation data. - 

Figure 17 shows the variation in effective resonant frequency vs the deflection parameter Rv,/Q. The solid curve 
is based upon (42) and shows that the ratio of the maximum to minimum resonant frequency is two to one. The actual 
frequency range was from 60 to 120 cps. These frequencies are lower than would be indicated by direct application of 
(42) because of the additional mass of the clamps on the experimental beams. 

A final factor, which has not been discussed as yet, is the temperature rise of the beam resulting from the energy 
dissipated at the interface. Figure 18 shows the temperature-time history of a beam vibrating in air with a tip amplitude 
of 0.25 in. and with a clamping pressure of 30 psi. The measurement was made with a thermocouple mounted 1 in. 
from the tip on the outer surface of the beam. The beam shows a temperature rise of 40°F and approaches equilibrium 
in approximately 20 min. Of course, the energy is dissipated very locally at asperity contacts, and at these points the 
temperature may be somewhat higher. For a good thermal conductor, such as aluminum, the peak temperatures at the 
interface are probably not much greater than those measured. Significant thermal softening of 7075-T6 aluminum does 
not occur until above about 300°F. 
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FIGURE 18. TEMPERATURE RISE MEASURED AT THE TIP OF CANTILEVER 
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IV. OSCILLATORY SLIP EXPERIMENTS WITH COPPER 

Oscillatory slip experiments were performed with copper in the same manner as previously reported for 
aluminum. [ 11 These experiments consist of measuring the oscillatory tangential force and relative displacement 
between two 1-in.-square blocks of the specimen material which are pressed together with a static normal load. Copper 
has an oxide of equivalent hardness as the base metal in contrast to the aluminum which forms a hard oxide. The 
hardness of aluminum and its oxide is 15 and 1800 Kg/mmZ, respectively; the corresponding values for copper are 120 
and 150 Kg/mm2 [ 131 . The experiments with copper were intended to further clarify the role of surface oxides in 
controlling slip behavior in air and in vacuum. The copper specimens were run in the same apparatus as previously 
reported [ l ]  and the measurements were made in essentially the same manner. 

The surfaces of the copper specimens were machined with a flycutter in the same manner as the aluminum. The 
contacting surfaces were cleaned in the following steps: (1) cleaned in a vapor degreaser for 5 min, (2) put in a cathodic 
cleaner and heated to 140"F, (3) rinsed with tap water, (4) plated in a 50-percent hydrochloric acid, 50-percent 
distilled water solution for 1 min, and ( 5 )  finally rinsed in distilled water and ethyl alcohol. The chemical composition 
of the copper was: iron, 0.1 percent; phosphorous, 0.001 percent; oxygen, 0.021 percent; copper, 99.96 percent; other 
elements, nil. 

The specimens were first tested at low tangential force increments in the microslip range.* Hysteresis loops were 
recorded at each force increment. In all cases for microslip, the normal load was 20 lb and the frequency of the 
tangential force was 50 cps. The tangential force was then increased in magnitude to produce gross slip and the 
specimen was run in this condition for a period of approximately 4 hr. Subsequently, the tangential force was again 
reduced and the microslip measurements were repeated. Three specimens each were run in vacuum torr) and in 
dry air. 

For displacements in the microslip range, compliance measurements indicated more scatter than in the aluminum 
because of the greater difficulty encountered in uniformly machining the copper surfaces and, perhaps, in obtaining 
equivalent surface cleanness. For the limited number of specimens tested, there appeared no significant difference in 
the initial compliance or in the compliance after gross slip between the specimens tested in air and those tested in 
vacuum. The copper specimens did show evidence of workhardening effects in that the microslip hysteresis loops closed 
up gradually in the initial period after application of tangential load. Measurements were taken only after 10 min of 
oscillation at each incremental load, or after the loops were stabilized. 

Measured values of energy dissipation per cycle are given in Figures 19 and 20 for air and vacuum runs. For runs 
in both air and vacuum, the energy dissipation doer; not appear to be markedly changed between initial runs and runs 
made after gross slip had occurred. Both this result and the compliance data suggest that the oxide layer is playing less 
of a role than was apparent with the aluminum. For the aluminum, heavy mechanical wear produced by the prolonged 
gross slip was reflected in subsequent changes in the microslip compliance and dissipation. For equal tangential force 
amplitudes, the vacuum data do indicate lower energy dissipation values. T h s  implies a greater resistance to slip and 
higher effective coefficient of friction for the tests in vacuum. 

Typical gross slip hysteresis loops are shown in Figure 21. The shape of the microslip hysteresis loops were similar 
to the aluminum [ 11 . The gross slip loop obtained in air for copper also looks very similar to the corresponding loop 
for aluminum. The surfaces of copper specimens observed after gross slip in air showed the existence of dark oxide 
particles in the wear tracks as in the aluminum. Similar surfaces for tests performed in vacuum had bright or shiny wear 
tracks and no evidence of particles. In vacuum, the force during slip appears unstable and the loops are somewhat 
saddle-shaped. They are similar to loops obtained with aluminum after a period of slip in nitrogen (Ref. 1, Figure 22). 
The saddle shape may indicate a difference in the static and dynamic coefficient of friction. 

*Tangential loads less than required to produce gross slip or relative rigid body displacements between the two surfaces. 
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FIGURE 21. GROSS SLIP HYSTERESIS LOOPS FOR COPPER 
IN AIR AND IN VACUUM 

The gross slip measurements gave a very large change in apparent coefficient of friction between air and vacuum 
runs. In Figure 21, the tangential force required to initiate slip is approximately the same in both the air and vacuum 
records. However, while the normal force in the air test is 10 lb, it was necessary to reduce the normal force to 1 lb in 
the vacuum tests in order to  produce slip. The coefficient of friction determined from the ratio of the tangential force 
required to initiate gross slip to the force normal to the surface was 0.52 in air and 7.15 in vacuum, an order of 
magnitude difference. 

It appears that, while the influence of the oxidmn copper may not be as significant as with aluminum, other 
surface or material properties are causing a much stronger vacuum adhesion or welding with copper than with the 
aluminum. 
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v. DISCUSSION 

The experiments on beam damping were compared with analysis which included only the slip mechanism for 
dissipation of energy. Other dissipation mechanisms are present, the most significant of which are air damping and 
internal material damping due to  cyclic stressing. Baker, et al. [14] have examined these mechanisms in detail for 
cantilever beams. For air damping, the primary mechanism appears to be a drag force proportional to the square of the 
velocity of the beam. The loss coefficient can be given for this mechanism by 

where P A  / p  is the ratio of the density of air to that of the beam, C, 1 is a drag coefficient, f i n  is a parameter related 
to  the beam mode shape (PI = 1.473) and 2h is the thickness of the beam. Substituting appropriate values gives QSA = 
(5 X Vm/2h, which for the entire range of the present experiments is negligible with respect to the slip 
mechanism. 

Material damping may arise from several internal mechanisms in metals. However, the dominant mechanism at 
low frequencies appears to be Zener type damping which is based upon a viscoelastic solid with complex modulus and a 
relaxation time based upon transverse heat flow. The loss coefficient for this mechanism is given by [12,14] 

C Y ~ E T  or 
7 + 0 2 r 2  

where 

a = linear thermal expansion coefficient 

E = Young’s modulus 

T = absolute temperature 

C = specific heat 

w = frequency of harmonic motion 

T = h2c/n2k = relaxation time 

k = thermal conductivity 

h = beam thckness 

The maximum in qsM occurs when WT = 1. For aluminum, the maximum value is approximately 2.4 X IO- 3 .  For the 
beams used in the present experiments, this maximum in loss coefficient occurs at a frequency of about 3 cps. At 60 
cps, the lowest frequency used, the loss coefficient is down about one order of magnitude, again negligible compared 
with the loss coefficient due to slip. 

It is apparent that slip damping can be a dominant contributor to the overall damping of structures or assemblies 
whch contain joints under load. In a vacuum or space environment, where there is the loss of the various air damping 
mechanisms, slip damping can be even more significant. Therefore, one of the objectives of the present program was to 
evaluate to what extent slip damping itself would be affected by vacuum conditions. From the analysis, for which the 
basic assumptions appear to be verified by the present experiments and those of previous investigators, it is evident that 
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any effect which alters the coefficient of friction of the surfaces in contact will change the energy dissipation or the loss 
coefficient. Studies of friction in vacuum are fairly extensive and generally indicate an increase in 1.1 over ambient 
conditions. The magnitude of this increase is, of course, dependent upon the specific material and its surface and bulk 
properties. 

The answer to  the question of whether the damping or loss coefficient will increase or decrease for a given 
structure taken from an air to a vacuum environment depends upon too many parameters to answer directly. For 
structures analogous to the one studied herein, it is obvious from Figure 3 that the loss coefficient may either increase 
or decrease with increasing coefficient of friction depending upon the value of the parameter Rv,/Q. Since this 
parameter contains five other variables in addition to the friction coefficient, it is possible to discuss the effects of 1.1 
alone only if the other parameters are fixed. The loading or displacement is usually not fixed. It should also be observed 
that not all systems containing slip elements will behave as in Figure 3 or have a maximum in Q*. Analysis is needed 
for a wider range of structural systems with slip. 

However, when the other system parameters are fixed and an analysis, such as derived herein, is available, the 
effect of changing friction coefficient can be quantitatively established. In applications, a major problem will be 
establishing an accurate value for the friction coefficient. The present tests demonstrate that t h s  is not a very 
reproducible parameter. This is especially true for unlubricated, microscopically rough surfaces. Since the asperity 
contact is essentially random, the mechanics of the interface under load is not completely deterministic. Therefore, the 
same load-deflection characteristics are not obtained for two interfaces which may be otherwise macroscopically 
similar. It should be noted that the average coefficients of friction obtained from the present beam bending tests are 
higher, both for air and vacuum tests, than those previously reported [ l ]  for tangential slip experiments with small 
blocks having surfaces prepared in the same manner. These again may be different from values obtained from standard 
friction tests using small spherical contact areas because of the differences in contact geometry. This is a perplexing 
problem for the designer or analyst who has the responsibility of predicting system performance. 

There are two directions in which research in interfacial slip is proceeding. The first is concerned with the detailed 
analysis of the mechanics of rough surface contact, with the objective of establishing a quantitative theory for slip in 
terms of the surface geometry and the surface and bulk properties of the materials. This direction is exemplified by the 
studies of Greenwood and Tabor [15] and Edwards and Halliiig [16,17]. The second direction is the engineering 
approach to establish the overall loss properties of various types of joints and connections found in structural systems. 
These analyses, such as the one presented herein, are based upon the assumption that slip is governed by Coulomb 
friction. A number of such studies were referenced in the introduction. 

The solutions available with the engineering approach are limited. They are restricted to simple lap joints under 
uniform axial force or torsion for bushing type joints and the few examples of beam bending already cited. Specific 
problems for flexural members which should be further examined include the effects of spatially variable normal 
pressure at the interface, more complex distributions of the applied loading, more exact solutions for distributed inertia 
loads, other boundary conditions for beams, and two-dimensional slip situations such as might occur with plates or 
shells. These solutions would help t o  place bounds on the magnitude of the loss coefficient and its variation with load 
or deflection for particular types of structural configurations. 

For example, the upper bound on the loss coefficient for the system studied in this report is very high, much 
higher than usually found in structural systems. This is because, in this example, the slip area encompasses the entire 
structure (beam) and the in-plane slip motion is unrestricted. For more general cases, the slip area is smaller with 
respect to the overall dimensions of the structure and the in-plane slip displacements are constrained at periodic 
intervals by rivets, bolts, or rigid terminations of some sort. These factors can significantly reduce the ratio of energy 
dissipation to elastic energy storage capacity. 

*See, for example, Lazan [ l o ] ,  p 114.  
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In practice, prediction of interface damping capacity is still restricted to relatively simple slip systems where the 
boundary and loading conditions are well prescribed. Even in these cases, unless the interface is specially prepared, 
variability in the friction coefficient will lead to  uncertainty in quantitative values. Also, one should keep in mind the 
inherent nonlinearity and hysteretic nature of the system when slip occurs. Nevertheless, the basic analysis has been 
established and verified by experiments on simple structures. Analysis of more complex systems is now needed to 
provide a more general understanding of the influence of structural parameters on interface damping capacity. 

a 
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VI. CONCLUSIONS 

The following conclusions have been derived from the analysis and experiments described in this report: 

The loss coefficient for a cantilever beam including slip can be expressed in terms of a single nondimen- 
sional displacement parameter. The loss coefficient has a maximum at a finite value of this parameter. 

Solutions for slip in cantilever beams previously available have been extended to beams with either nonsym- 
metric or multiple interfaces. 

To a first approximation, the inclusion of distributed inertia loading does not change the energy dissipated 
per cycle for a beam in forced vibration when compared with an equivalent static maximum deflection of 
the same beam. The deflection mode shape and the axial distribution of slip is modified, however. 

The change in frequency with amplitude of a cantilever beam including slip can be predicted. 

From vibration experiments with aluminum beams having an interface under uniform clamping pressure, 
the coefficient of friction is appreciably greater in vacuum than in air. This may lead to either an increase or 
a decrease in the loss coefficient depending upon the displacement amplitude and other physical parameters 
of the beam. 

Slip experiments with copper blocks in air and vacuum did not show as much effect of the wear of the 
oxide layer as did aluminum specimens previously tested. However, the apparent coefficient of friction for 
copper was much greater in vacuum than in air. 
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